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A B S T R A C T   

It is well known that observers can use so-called summary statistics of visual ensembles to simplify perceptual 
processing. The assumption has been that instead of representing feature distributions in detail the visual system 
extracts the mean and variance of visual ensembles. But recent evidence from implicit testing using a method 
called feature distribution learning showed that far more detail of the distributions is retained than the summary 
statistic literature indicates. Observers also encode higher-order statistics such as the kurtosis of feature distri-
butions of orientation and color. But this sort of learning has not been shown for more intricate aspects of visual 
information. Here we tested the learning of distractor ensembles for shape, using the feature distribution learning 
method. Using a linearized circular shape space, we found that learning of detailed distributions of shape does 
not occur for this shape space while observers were able to learn the mean and range of the distributions. 
Previous demonstrations of feature distribution learning involved simpler feature dimensions than the more 
complex shape space tested here, and our findings may therefore reveal important boundary conditions of feature 
distribution learning.   

1. Introduction 

The visual information describing the world around us is rich and 
highly complex. But detailed processing of these billions of bits of in-
formation exceeds the capacities of the visual system. Importantly, 
however, although visual information is noisy, it is not random. It is 
regularly structured in space and time. We are, for example, often 
confronted with sets of similar objects in our visual field, like individual 
leaves on a tree sharing properties such as shape, texture and color. This 
redundancy can be efficiently compressed using summary statistics of 
the items such as average and variance, which are more stable and less 
prone to noise than single representations. This strategy of summarizing 
and extracting compressed, statistical information (e.g. average or 
variance) of groups of features has long been studied within the 
framework of ensemble perception (e.g. Alvarez, 2011; Haberman & 
Whitney, 2012; Whitney & Leib, 2018). The extraction of mean and 
variance for groups of objects has been shown for features like orien-
tation (e.g. Miller & Sheldon, 1969; Parkes, Lund, Angelucci, Solomon & 
Morgan, 2001), hue (e.g. Maule, Witzel & Franklin, 2014; Webster, Kay 
& Webster, 2014), speed and direction of motion (Watamaniuk & 
Duchon, 1992; Watamaniuk & McKee, 1998) and size (Ariely, 2001; 
Chong & Treisman, 2003). 

Only a few studies have, however, addressed whether other sum-
mary statistics such as variance, skewness or kurtosis of visual ensem-
bles are also encoded. Atchley and Anderson (1995) presented 
participants with moving dot clouds. The velocity of each dot was drawn 
from a predefined distribution. Participants were able to detect dot 
clouds with different mean velocity or different variance but were un-
able to find dot clouds that had velocity distributions differing in 
skewness or kurtosis. Dakin and Watt (1997) found similar results for 
oriented lines. These results led to the conclusion that the visual system 
is not sensitive to these higher order ensemble statistics (Dakin, 2015). 

However, information about feature distributions in natural images 
is utilized to make perceptual decisions (e.g., orientation, Girshick, 
Landy, & Simoncelli, 2011) and Chetverikov et al. (2016, 2017a, 2017b, 
2021, see also Tanrikulu et al., 2020, 2021) recently introduced a new 
approach for studying internal representations of feature distributions, 
based on intertrial priming in visual search (Kristjánsson & Ásgeirsson, 
2019). They used “priming of pop out” (Maljkovic & Nakayama, 1994) 
which shows how switching target and distractor features leads to an 
increase in response time that is even larger than for new target and 
distractor features, a so-called role-reversal effect (Kristjánsson & 
Driver, 2008). Chetverikov et al. (2016) used such role-reversals to 
reveal observers’ internal models of distractor distributions. Their 
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participants viewed search displays containing 36 items drawn from a 
predefined distribution and searched for the oddly oriented item. After a 
few learning trials with this predefined distractor distribution, encod-
ings of the internal representation of the distribution were measured on 
a so-called test trial where a target drawn from the previously learned 
distractor distribution (or close to it in feature space) was presented. 
Chetverikov et al. found that search times were slower when the target 
feature was drawn from within the preceding distractor distribution 
(role-reversal), compared to when it was drawn from outside it. 
Crucially, response times varied as a function of the distance between 
the previous distractor mean and the current target (so-called CT-PD 
distance), so that the response time distribution mimicked the shape 
of the learned distractor distribution. Similar encoding characteristics 
were also found in the visual periphery (Tanrikulu et al., 2020). This 
showed that distributions of feature probabilities are encoded and affect 
search behavior. Importantly, Hansmann-Roth et al. (2021) then 
showed that the same observers who showed detailed learning of feature 
distributions were unable to explicitly judge the same properties when 
asked to compare two ensembles with different distribution character-
istics as is typically done in ensemble encoding studies. And Pascucci 
et al., (2022) have then shown that active search is not necessary for 
such learning, opening up further possibilities for how this learning 
could be used for representing the visual environment. Until now, 
however, this implicit method for studying representations of feature 
distributions has only been used to study low-level features such as color 
and orientation. 

Simple summary statistics of multiple features of one or more groups 
can be encoded simultaneously. Observers can simultaneously extract 
the average size of two groups of disks that differ in color (Chong & 
Treisman, 2005) and can even extract statistical information for up to 
four groups. However, encoding capacity for summary statistics of 
multiple groups is not unlimited. Simultaneous comparison of multiple 
averages of different groups resulted in worse performance than when 
groups were presented in succession (Attarha & Moore, 2015; Attarha 
et al. 2014). While these studies mainly focused on the ability to extract 
the same statistics from multiple independent groups, other studies have 
assessed the ability to extract different feature characteristics simulta-
neously. For example, Emmanouil & Treisman (2008) examined ob-
servers’ ability to extract the average speed and size of moving disks. 
Although, performance was affected when observers judged multiple 
features rather than only a single feature, some statistical information of 
multiple features could be encoded and extracted simultaneously. 
Whether learning of the full feature distributions of different visual 
features can simultaneously occur, has also been recently assessed: 
Hansmann-Roth et al. (2019) examined the simultaneous encoding of 
multiple low-level features of objects using the implicit FDL method. 
Observers searched for objects consisting of a task relevant and a task 
irrelevant feature. While the task-relevant feature was encoded in detail, 
the secondary feature was not encoded and even interfered with the 
encoding of the relevant feature. 

But how well is statistical information encoded for objects that 
cannot be described on a single perceptual dimension? While lines can 
be distinguished by their orientation and colored patches by their hue, 
other visual properties such as shape or material properties can differ on 
multiple perceptual dimensions. The perceived gloss of a surface is 
modulated by the specular reflectance of the material, but also by the 
albedo and the shape of the surface (Hansmann-Roth & Mamassian, 
2017; Nishida and Shinya, 1998; Olkkonen & Brainard, 2011; Pellacini 
et al. 2000). The roughness of a surface is not only modulated by its 
physical roughness or bumpiness, but also depends on the specular 
reflectance and albedo (Ho et al. 2008). Similarly, simple 2D shape 
representations are also a combination of multiple shape descriptors 
(compactness, perimeter, area, or the principal orientation axis) that the 
visual system uses to judge and compare shapes (e.g., Huang, 2020; 
Morgenstern et al. 2021, Zhang & Lu, 2004). 

While size, color and orientation are well studied in ensemble 

perception, only a handful of studies are available on the ensemble 
encoding of shape. This lack of studies might be explained by the fact 
that studying shapes is difficult because they are multidimensional. But, 
at higher levels of the visual processing hierarchy, the brain might, 
nevertheless, combine multiple dimensions to achieve properties desir-
able for real-world behavior, such as object recognition (Di Carlo, Zoc-
colan, Rust, 2012). Nevertheless, Sweeny et al. (2021) and Elias & 
Sweeny (2020) have shown that observers can successfully extract the 
average aspect ratio of groups of ellipses. Khayat et al. (2021) presented 
novel shapes to observers in RSVP and tested them afterwards on a 
memory task. Observers implicitly represented the group mean and 
category boundaries of the ensembles. 

A recently proposed shape space (Li et al. 2020) that includes 2D 
contours in a perceptually uniform space enables new ways of studying 
the encoding of shape ensembles, including with FDL methods. Li and 
colleagues (2020) started with 12 prototype shapes and morphed them 
to ultimately create a 360◦ circular shape space. Using similarity judg-
ments, they refined their shape space so that eventually similar angular 
distances corresponded to similar perceptual differences. This shape 
space therefore allows the application of FDL methodology, just as we 
have done with other circular shape spaces like orientation and color. 

1.1. Current aims and predictions 

How precisely can ensembles of differently shaped 2D contours be 
encoded? We presented observers with differently shaped objects drawn 
from a Gaussian or a uniform distribution, measuring how rich the 
representations of such ensembles are. By using the newly proposed 
perceptually uniform shape space (Li et al., 2020), we can utilize our 
feature distribution learning (FDL) method to examine the richness of 
shape representations. Based on our previous results showing encoding 
of full feature distributions we can hypothesize what the shape of our 
RT-functions on test trials will look like depending on how much sta-
tistical information is encoded (Fig. 2). In previous experiments, the 
shape of the RT-function on test trials resembled the shape of the un-
derlying feature distribution (Fig. 2d). In contrast, if no information 
about ensembles on learning trials is encoded, the RT-function should be 
flat (not affected by mean, range or probabilities; Fig. 2a). If observers 
encode the summary statistics of the ensemble (mean and range) their 
RT-functions should show a flat part with higher search times within the 
range than outside it (Fig. 2b). Moreover, if only mean and range are 
encoded, we expect no differences between different distractor distri-
butions (Gaussian versus uniform were contrasted) and the first part of 
the RT-function should be flat since probabilities are not encoded. 
Alternatively, observers might have prior expectations for the distribu-
tion shape of an ensemble, such as a Gaussian prior which is defined by 
only two parameters. If mean and range are encoded and such priors 
exist, then the RT-functions on the test trial should resemble the shape of 
a Gaussian distribution for both distribution shapes (Fig. 2c). And to 
reiterate, if the shape of the distractor distributions is encoded during 
the learning trials, then RT-functions on test-trials should resemble the 
shape of the two distractor distributions tested (Fig. 2d). 

We presented observers with ensembles of 2D shapes (Fig. 1) and 
tested their implicit encoding of the distractor distribution using our 
recently developed feature distribution learning (FDL) paradigm. 
Throughout the experiment, observers searched for an oddly-shaped 
target among a set of distractors of varying shapes. This enables care-
ful examination of the richness of the encoded distractor distributions by 
comparing their RT-functions to the predictions in Fig. 2. 

2. Material and methods 

2.1. Procedure/Task 

All participants completed two sessions which lasted about 50–60 
min each on separate days. These sessions were preceded by a training 
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session consisting of the same amount of blocks. A single session con-
sisted of 432 blocks and 1944 search trials in total. One block consisted 
of 3–4 learning trials and one test trial. On each trial, participants were 
instructed to find the odd-one-out shape (the target) and indicate its 
position by pressing the “i” key if it was in the upper three rows and “j” if 
it was in the lower three rows. The stimuli were presented until response 
and participants were encouraged to respond as quickly and accurately 
as possible. After each button press the next trial began. If participants 
made a mistake, the word ERROR appeared on the screen for 1 s. For 
motivational purposes participants’ performance was scored and their 
score on the last trial was presented in the upper left corner of the screen. 
The score was computed as Score = 10 + (1-RT) *10 for a correct 
response and Score = -|Score|-10 for an error, where RT is the response 
time in seconds. Both training and test sessions were interrupted by 
three breaks, when the total score was displayed on the screen. 

2.2. Stimuli 

Our search displays consisted of 36 shapes that appeared on an 
invisible 6 × 6 grid that subtended 16 × 16◦ of visual angle on the center 

of the screen. We used the Validated Circular Space (Li et al. 2020) that 
contains a set of 360 shapes organized in a circular space similar to the 
color wheel and orientation space. This space has been validated to 
ensure that it is perceptually uniform: Similar distances in degrees are 
visually like similar distances for other shapes on the shape wheel (Li 
et al. 2020). We used 180 different shapes from this space (every second 
shape on the wheel). This allowed us to use the same distribution pa-
rameters (SD, distance between target and distractors) as in our orien-
tation learning experiments (Chetverikov et al. 2016, 2017b). 

All individual shape positions on the monitor were jittered by adding 
random values between +/- 0.5◦ to the horizontal and vertical co-
ordinates. The distractors were drawn from either a truncated Gaussian 
or a uniform distribution. These distributions had an SD of 15◦ and the 
uniform distribution a range of 60◦ (values outside this range of the 
Gaussian distribution were removed, so that both distributions had the 
same range). 

During test trials, distractors were drawn from a Gaussian distribu-
tion with an SD of 10◦. The mean of the distractor distribution at the 
beginning of each learning streak and the target shape were randomly 
selected with the restriction that the target had to be 70-110◦ away from 
the distractor mean to ensure that the target differed sufficiently from 
the distractors (see Fig. 3). This learning streak was followed by a test 
trial, in which the target was positioned at particular probe points from 
within and around the previously presented distractor distribution. The 
probe points ranged from − 80◦ to 80◦ in steps of 20◦ (with an added 
random value between − 10◦ to 10◦). We refer to this as the current 
target to previous distractor distance (CT-PD). The distractor mean was 
selected randomly, again with the restriction that the minimum distance 
was 70◦ and the maximum distance was 110◦. 

2.3. Observers 

11 participants (mean age: 27.1, 7 females) completed the experi-
ment. All (except for one author) were naïve to the purpose of the study 
and all had normal or corrected-to-normal vision. They all gave written, 
informed consent. All experiments conformed to the requirements of the 
local ethics committee and the Declaration of Helsinki. 

2.4. Apparatus 

All stimuli were displayed on a 24-inch LCD monitor (ASUS, 
VX248h) with a resolution of 1920 × 1080. All stimuli were displayed 
using Matlab R2016a and Psychtoolbox-3 (Brainard, 1997) that ran on a 
Desktop PC with Windows 10. 

2.5. Data analysis 

Data analyses closely followed the approach introduced to study the 

Fig. 1. Screenshot of a stimulus on a single learning trial. The odd-one-out 
target is in the bottom row, fourth column in this example, while all other 
shapes are distractors drawn from a Gaussian distribution. 
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Fig. 2. Overview of the potential search time functions on the test trials depending on how much information about the shape distributions is encoded. Search times 
should reflect the amount of information encoded about the distractor distribution and are plotted against the distance between the current target and previous 
distractor distribution (Target CT-PD). a) If observers do not encode any distractor distribution characteristics, the RT function would be flat. B) shows an RT function 
if information about the mean and range of the distractor features is encoded but not the probabilities of the individual distractors. c) Observers might also encode 
information about the mean and range of the distractors and assume a Gaussian distribution as a prior. d) If observers encode the full distractor distributions, then RT 
functions on test trials should differ depending on whether the distractor distribution was Gaussian or uniform. 
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encoding of orientation (Chetverikov et al. 2016, 2017a, 2017c) and 
color distributions (Chetverikov et al. 2017b; Hansmann-Roth et al., 
2019, Hansmann-Roth et al. 2022). Reaction times were log- 
transformed for the final data analysis. Trials with incorrect responses 
and the trial immediately following an incorrect response were removed 
(because of potential post-error slowing). To assess any influence of 
distribution shape and the effects of repetition within a learning streak 
we conducted two-way repeated-measures ANOVAs, with Green-
house–Geisser corrections, where applicable, after testing for sphericity 
using Mauchly tests. ANOVAs were conducted in R (R Development Core 
Team, 2012) from the ez package (Lawrence, 2016). We compared the 
shapes of the RT CT-PD function using segmented regressions (Muggeo, 
2008). Confidence intervals are presented on the non-log data, but all 
statistical tests are done on log-transformed search times. We also fitted 
pre-specified models to our data that corresponded to actual distribution 
shapes: a uniform model with a fixed range of 30◦, a half-Gaussian 
model with SD = 15◦, a linear model and a “uniform with decrease 
model”, which contains a flat part within the distribution range and a 
linear decrease outside it. Each model includes a Gaussian-distributed 
error term (see supplementary material for equations). We fitted the 
different models to our data and obtained the best-fitting parameters 
using Maximum Likelihood Estimation and used the Bayesian Informa-
tion Criterion for comparing models. 

3. Results 

Our previous research has shown that the visual system can encode 
intricate features of color and orientation distributions (Chetverikov 
et al., 2016, 2017; Hansmann-Roth et al., 2019; 2021; Tanrikulu et al., 
2020; 2021). Our goal was to examine how much statistical information 
(mean, range or shape distribution) of ensembles of differently shaped 
objects is encoded. 

We first analyzed observers search performance on learning trials 
where they searched for an oddly-shaped target. Learning streaks con-
sisted of 3–4 learning trials where the distractor distribution 

characteristics were constant. Fig. 4 plots the average search times and 
error rates on these learning streaks separately for both distractor dis-
tribution types. 

We analyzed average error rates for both distractor distributions and 
compared the change in error rates over the trials in the learning streaks. 
A two-factor (distribution type × trial number within learning streak) 
repeated-measures ANOVA revealed a main effect of trial number dur-
ing the learning streak, F(3, 30) = 21.93, p <.001, η2

G = 0.17 but no 
effect of distractor distribution type F(1, 10) = 2.67, p =.133, η2

G = 0.02 
nor an interaction, F(3, 30) = 0.06, p =.950, η2

G less than 0.01. Overall, 
the error rates were very small. Observers responded more accurately on 
later trials within a learning streak but the average error rates did not 
differ significantly between the two distractor distributions. 

Furthermore, we analyzed average search times for both distractor 
distributions, comparing the change in search time over the trials within 
the learning streaks. A two-factor (distribution type × trial number in 
learning streak) repeated-measures ANOVA revealed a main effect of 
trial number, F(3, 30) = 91.03, p <.001, η2

G = 0.17, a significant effect of 
distribution type F(1, 10) = 164.38, p <.001, η2

G = 0.13 but no inter-
action, F(3, 30) = 0.5, p >.05, η2

G = 0.00. Participants responded faster 
during later trials within a streak and faster for targets drawn from a 
Gaussian distribution. These search time differences between the uni-
form and the Gaussian distribution during the learning might be induced 
by the small difference in standard deviation. Both distributions had the 
same stimulus range which causes the standard deviation for the uni-
form distribution to be slightly larger than the standard deviation for the 
Gaussian distractor distribution (17.3◦ vs 15◦). 

In previous FDL studies, search times on test trials followed the shape 
of the underlying distractor distribution: RT functions on test trials that 
followed a Gaussian distractor distribution monotonically decreased, 
while RT functions following uniform distractor distributions consisted 
of a two-step function: a flat part followed by a linear decrease with a 
significant breakpoint close to the edge of the underlying physical 
distribution. 

To what extent were observers able to encode certain characteristics 

Fig. 3. Overview of the distractor distributions on learning and test trials along with examples of target positions relative to the distractor distributions.  

S. Hansmann-Roth et al.                                                                                                                                                                                                                      



Vision Research 206 (2023) 108190

5

(mean, range and/or distribution shape) of the distractor distributions? 
We used our previously developed analysis method to assess the shape of 
the RT functions on the test trials and their similarity to the underlying 
distractor distributions from the learning trials. Fig. 5 plots search times 
on the test trials as a function of the distance between the target on the 
test trial and the mean of the previous distractor distribution. The upper 
panel plots the underlying physical distractor distributions for 

comparison. To compare the RT functions to our different hypothetical 
results plotted in Fig. 1, we first conducted a segmented regression and 
then fitted predefined models to our data that corresponded to different 
distribution shapes. 

The segmented regression systematically searches for changes in the 
slope of the RT function. Both RT functions were very similar showing an 
initial flat part followed by a steep decrease. Our segmented regression 
analyses confirmed these informal observations: Following a uniform 
distractor distribution, the Davies test confirmed a significant break-
point at 26◦ away from the distribution mean (p =.004). The segment 
before the breakpoint was not significantly different from zero, b =
-0.08, CI = [-2.17,2.01] and the segment after the breakpoint showed a 
significantly negative slope, b = -2.65, CI = [-3.19, − 2.11]. Following a 
Gaussian distribution, we observed the same pattern: a significant 
breakpoint, confirmed by the Davies test (p =.007), at 27.6◦ from the 
distractor distribution mean. The first segment was flat and not signifi-
cantly different from zero, b = -0.49, CI = [-2.40, 1.42] and the second 
segment after the breakpoint showed a significantly negative slope, b =
-2.73, CI = [-3.27, − 218]. 

In an additional step we also fitted our predefined models to the RT- 
functions. These predefined models have been used to study distribution 
learning for color and orientation (Chetverikov et al., 2019). Our pre-
defined models corresponded to different distribution shapes and were 
compared to a Null model that assumes no encoding of the statistical 
characteristics of the presented ensemble. We used a half-Gaussian 
model with a SD = 15, a uniform model with a fixed range of 30 and 
a linear model and a “uniform with decrease” model. Each model entails 
a Gaussian-distributed error term. We then extracted the best fitting 
parameters using Maximum Likelihood Estimation and used a Bayesian 
Information Criterion for comparison. Fig. 6 shows observers’ data and 
the resulting fits. For both RT functions the “uniform with decrease” 
model provided the best fit (uniform: BIC = 3008.27; Gaussian: 
3246.25), followed by the linear model (uniform: ΔBIC = 12.8; 
Gaussian: 6.6). Moreover, we fitted these models separately to the data 
for individual observers. Following a uniform distractor distribution, the 
best model fit for most observers was provided by the “uniform with 
decrease” model and the uniform model (N = 7 (uniform model for one 
observer)), followed by the linear model which provided the best fit for 3 
observers. For the remaining observer the Null model provided the best 
fit, indicating that this observer did not encode any information about 
the distribution statistics. There was no difference between the best 
model fit and the Null model fit: ΔBIC = 1.3. 

Following a Gaussian distractor distribution, the best model fit was 
also provided by the “uniform with decrease” and the uniform model (N 
= 7 (uniform model for one observer, although the difference between 
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Fig. 4. Search times and accuracy on the learning trials. Mean search times (a) and mean error rates (b) across all observers are plotted as a function of the trial 
number on the learning trials. Colors correspond to the two different distractor distribution types. Error bars correspond to the 95% CI adjusted for within-subject 
variability (Morey, 2008). 

Fig. 5. Mean search times on the test trials across all observers against the 
distance between the current target and the previous distractor distribution 
mean (CT-PD). Only trials where observers found the correct target are 
included. Gray areas show the 95% CI’s based on the fitted loess functions. Each 
fitted curve corresponds to one of the distractor distribution shapes on the 
learning trials. The upper panel corresponds to the actual distractor distribution 
shape. We plot only the absolute CT-PD since both distractor distributions are 
symmetrical. 
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the uniform and the “uniform with decrease” model for this observer 
was small: ΔBIC = 1.05)). For the remaining 4 observers the linear 
model provided the best fit. 

Overall, our results show that observers can encode information 
about shape ensemble statistics on the learning trials. In contrast with 
previous results for orientation and color, however, we found no dif-
ferences between encodings of Gaussian and uniform distractor distri-
butions. This suggests that the distractor distributions of the 2D shapes 
were not fully encoded but were approximated by their mean and range. 
Both the segmented regression and the model comparisons show that 
observers successfully learned the mean and the range of the distractor 
distributions, but distribution shapes were not encoded. 

4. Discussion 

We have previously shown how observers can learn surprisingly 
intricate details of distributions of simple features (color and orienta-
tion). Here, we expanded our paradigm to study the encoding of feature 
distributions of the dimension of shape using a circular and perceptually 
uniform shape space (Li et al., 2020). This is a more elaborate stimulus 
set, that includes a higher number of dimensions that can vary. 

We applied our feature distribution learning method (Chetverikov 
et al., 2016, 2019), presenting observers with ensembles of distractors 
sampled from either a uniform or a Gaussian distribution from the shape 
space and a single target that observers had to find as quickly and 
accurately as possible. We examined search times on test trials as a 
function of the feature distance between the target on the test trial and 
the previous distractor distribution to assess how much information 
about the distractor distributions was encoded. Our previous work 
showed that observers can encode the full probability density functions 
of feature distributions for orientation and color. Conversely, the current 
results show that while observers can implicitly encode summary sta-
tistics (mean and range) for differently shaped distractors, there were no 
differences in the shape of the RT-functions on test trials indicating that 
the full probabilistic representation of the distractors was not encoded. 

Our distractors were defined by shape (contour) differences. While 
color and orientation are low-level visual features, shape as defined is 
this stimulus set, is a far more complex entity. The objects vary in the 
shape of the contours, in convexity and concavity, and in the area of the 

stimulus. Multiple features of the contour are therefore likely to 
contribute to the percept of the individual objects of the ensemble. As we 
previously showed (Hansmann-Roth et al., 2019) there are limits to 
what can be learned in FDL studies. There we tested whether two 
probability distributions of different features could be learned simulta-
neously. Observers performed a search task with lines of a particular 
orientation and color drawn from Gaussian or uniform distributions, 
either searching for the oddly oriented or oddly colored line. Observers 
were able to learn task-relevant distributions, but unable to learn the 
shape of the irrelevant feature distribution, although they were able to 
learn its summary statistics (mean and range). What is visible from the 
examples in Fig. 3 is that the target shape might not pop-out to the same 
degree as e.g., a red colored circle among greenish circles. Extracting 
statistical information from visual scenes differs depending on whether 
global or local attention is deployed. Chong and Treisman (2005) 
combined two different tasks within a trial: First, participants performed 
either serial search (closed circle among open circles) or a parallel 
search (open circle among closed circles). Immediately afterwards, 
participants were presented with two test circles and either performed a 
member identification task or a mean discrimination task. They were 
asked to indicate which test circle corresponded to the mean size of 
circles, and in the member identification task, they indicated which test 
circle had been presented at a particular location within the display. 
Their results showed that after parallel search, participants performance 
on the mean discrimination task was better than if it was preceded by a 
serial search task that requires more local attention than a parallel 
search task. In previous research, we also showed the importance of 
parallel processing for distribution learning. Representing the distribu-
tion shape requires large set sizes during the visual search task. Visual 
search displays with less than 36 items resulted in no encoding of the 
shape of the feature distribution, demonstrating that sampling only a 
small number of items from the display is not sufficient (Chetverikov 
et al. 2017c). Moreover, our previous also showed that encoding the 
shape of a feature distribution requires a large set of stimuli (distractors) 
drawn from that distribution. Observers did not encode any information 
about the shape of the distractor distributions for set size smaller than 36 
items. These results furthermore demonstrate that distribution learning 
needs parallel processing of the distractors (Chetverikov et al. 2017c). If 
those complex shapes applied here prevent parallel search and the target 
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"Uniform with decrease" model
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uniformGaussian Fig. 6. Mean search times on the test trials across all 
observers are plotted against the distance between the 
current target and the previous distractor distribution 
mean (CT-PD). The observed data is plotted along 
with the modelling fits using maximum likelihood 
estimation. The observed data is plotted in orange and 
the best fit of the different models to the observed 
data is plotted in blue, green, purple and red. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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can only be found through serial search, then this may prevent distri-
bution learning as well. 

The circular shape space applied in this study was developed based 
on an initial morphing of different shapes from a set of prototypes. The 
authors then used participants similarity ratings and reconstructed a 
shape space using multidimensional scaling. After multiple iterations 
they obtained their circular shape space, which is comparable to the 
color wheel in CIELAB color space. The angular distance between shapes 
along their circle is a proxy of their overall visual similarity. The suc-
cessful creation of such a space suggests that the shape space is encoded 
by the visual system. 

Two pairs of shapes with the same angular distance in this shape 
space also exhibit a similar visual dissimilarity to human observers, even 
though the shape of the contours, features such as curvature, symmetry, 
complexity might completely differ. Based on this, we assume that these 
shapes can be processed holistically and the lack of learning the dis-
tractor distribution shape is therefore not caused by the particular shape 
space we applied. 

The shape space has also been tested in a study investigating inter-
ference effects in working memory and results in that study were com-
parable to the results they obtained using the color wheel (Li et al. 
2019). It appears that the shape space affects memory in a similar way as 
color, highlighting that this shape space is like a color wheel and can be 
used to study ensemble perception, working memory etc., similarly to 
other visual features. 

Our current results may therefore reveal further limits of feature 
distribution learning. The shape variation that we tested here is multi-
dimensional. The shapes are assembled from different parts, and these 
parts may have different salience (Biederman, 1987; Hoffman & 
Richards, 1984; Hoffman & Singh, 1997; Marr & Nishihara, 1978). 
Different individual parts might therefore correspond to the final 
percept making any learning of the feature space of shapes far more 
difficult than the more straightforward one-dimensional features that 
we have tested previously. 

Another related issue is whether the search that was tested here may 
differ from the search tasks in our previous demonstrations of feature 
distribution learning. For example, when the odd-one-out item contains 
a salient convexity versus when the odd-one-out approaches the shape of 
a pentagon may involve a very different search scenario. Visual simi-
larity is an important determinant of visual search performance (Duncan 
& Humphreys, 1989; Hout et al. 2016). While orientation space may 
contain anisotropies in the form of cardinal biases, and color space may 
contain salient color category boundaries, the net effect may not be as 
damaging to feature distribution learning as for the shape space that we 
test here. It is also interesting that the search time differences between 
uniform and Gaussian distributions that we observe here are similar to 
those that we have found in previous FDL studies, yet no encoding of the 
different distractor distribution shapes occurred. 

Based on the results one might ask whether the shape space we 
applied was therefore not encoded? However, based on the predictions 
described in the Introduction (Fig. 2), our results fit best with the 
assumption that observers encoded the mean and the range of the dis-
tractor distributions but could not encode the probabilities of the indi-
vidual distractors. Moreover, the decrease in response times and the 
increase in accuracy during the learning blocks also shows that infor-
mation about the target and distractor shape was encoded, namely the 
mean and range. 

To sum up, we tested learning of distributions for a newly proposed 
linearized shape space (Li et al., 2020). While observers were able to 
learn the mean and range, unlike previous results for orientation and 
color space, they were unable to learn the distribution shape. Shape 
space contains more variation than the simpler spaces that were tested 
previously and the current results may therefore reveal important 
boundary conditions on possibilities for feature distribution learning. 

CRediT authorship contribution statement 

Sabrina Hansmann-Roth: Conceptualization, Methodology, Soft-
ware, Validation, Data curation, Formal analysis, Writing – original 
draft. Andrey Chetverikov: Conceptualization, Methodology, Writing – 
review & editing, Project administration, Funding acquisition. Árni 
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